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The shear moduli of a series of the title polyesters spanning a crystallinity range of 0-60% have been 
measured as a function of temperature at ~1 Hz using a torsion pendulum. The experimental isochronal 
temperature scans of G' and G" are fitted to phenomenological equations. With only minor adjustments, 
the same relaxation spectrum parameters as found dielectrically for these polymers (relaxation shape, 
central relaxation times) fit the mechanical data. Thus, for the fl (glass-rubber) relaxation in the 
amorphous fraction the broadness is very sensitive to the presence of the crystal fraction and becomes 
increasingly broad as the degree of crystallinity increases. In contrast, the ~ process dynamic behaviour is 
insensitive to the presence of and degree of crystallinity. Unrelaxed and relaxed moduli values are 
determined for the 7 and fl processes. A composite model approach is used to determine bounds on the 
amorphous-phase unrelaxed and relaxed ~, and fl moduli from the bulk specimen values. As was the case 
dielectrically, the 7 process, in addition to being assigned to the amorphous fraction, has a strength that 
depends on the diol composition also. The relaxed (7+ fl) amorphous-phase rubbery shear modulus is 
bound reasonably well from application of the composite model to the bulk specimen values and is 
assigned the value 100 -I- 20 M Pa at 250 K. It decreases relatively strongly with increasing temperatu re. 

Keyword$ Aliphatic polyesters; mechanical relaxation; relaxation strength; relaxation width; amor- 
phous phase modulus; lamellar bounds 

INTRODUCTION 

The issues and motivation for the present work are 
explained in the Introduction to Part 21 . Again, the effects 
of the presence of the crystal phase on the relaxation 
processes in the amorphous fraction is examined. In a 
completely amorphous uncrosslinked polymer, in passing 
through the glass transition with increasing temperature, 
the mechanical modulus (isochronally) decreases 
precipitously towards a temporary molecular weight 
dependent rubbery plateau at least several decades in 
magnitude below the glassy modulus. In a semi- 
crystalline polymer with a glass transition in the 
amorphous fraction the re-inforcing effect of the crystals 
would severely limit the magnitude of this decrease even if 
no further effects were operative. However, the 
connections of the amorphous chains to the crystals 
and even the presence of the crystal surfaces 2 have 
the potential to modify greatly the mechanical behaviour 
of the amorphous fraction over that of an unconstrained 
amorphous phase of the same material. In a sense this is 
analogous to crosslinking of a rubbery material (and 
indeed it has been treated as such3). The fundamental 
questions with respect to relaxation are similar to those 
discussed in Part 2. It would be very desirable to quantify 
the degree of immobilization of the amorphous fraction 
by the crystals to establish the extent to which the lack of 
prominence of the fl (glass-rubber) relaxation in certain 
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highly crystalline polymers (LPE, POM) is related t o  
kinetic broadening of the relaxation and to reduction 
in relaxation strength. In contrast to the dielectric 
case where the analysis in Part 2 may be the 
only well-documentexi case definitely showing that the 
presence of crystal fraction does indeed reduce the 
relaxation strength as well as broadening the relaxation, 
in the mechanical case the amorphous-phase relaxation 
strength must markedly decrease as this just means that 
the rubbery amorphous-phase modulus is much higher 
than for the free amorphous material. It is necessary to 
establish the magnitude of the amorphous-phase modulus 
in polymers with a well developed fl relaxation and 
whether it would be reasonable to suppose the relaxed 
modulus could become so high in highly crystalline 
polymers as to effectively suppress the fl relaxation in an 
equilibrium sense. The purpose of the present work is to 
measure the shear modulus of the series of aliphatic 
polyesters described in Part 2. In a first step phenomeno- 
logical equations are fitted to the data. Then the 
interpretation of the relaxed moduli in terms of the 
separate phase moduli is attempted. To accomplish the 
latter an adequate composite model for the two-phase 
mixture is required. Such modelling is inherently more 
difficult mechanically than dielectrically because the 
disparity between the phase properties is potentially 
greater mechanically. However, considerable quanti- 
fication of the amorphous phase modulus is possible. 
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Figure I Experimental data for storage shear modulus of semi- 
crystalline 6-6 homopolymer versus temperature (~ 1 Hz) 
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Figure 2 Experimental data for loss shear modulus o f  6 - - 6  s e m i -  
c r y s t a l l i n e  homopolymer versus temperature (-~1 Hz) 

EXPERIMENTAL 

The shear modulus was measured approximately 
isochronally (~ 1 Hz) is a free oscillation torsion pen- 
dulum. The instrument was designed by E. Baer, J. R. 
Kastellic and P. A. Hiltner of Case Western University 
and manufactured for us by the Dycar Corp. It is of the 
inverted type, with double Dewar jackets. The pendulum 
is set in motion by an electromagnetic deflector and its 
excursion is monitored by a light beam reflected from a 
mirror mounted on the inertia arm and directed onto a 
photoresistor the output of which is recorded. Tem- 
peratures were measured by two thermocouples placed 
near the specimen and whose outputs were connected to a 
Fluke digitial thermometer (model 2100A). The measure- 
ments were made at constant temperature controlled by a 
Honeywell model R7350A controller. A nitrogen 
atmosphere was used in the gas-tight pendulum and 
liquid nitrogen was used to cool the system to - 190°C at 
the start of an experiment. The storage shear modulus was 
calculated from 4: 

G ' -  121r2IL (1 +A/x 2) CT 
CDaNP~ 4DaN (1) 

where I is the moment of inertia, L the specimen length, C 
its width, D its thickness, P=27t/o~, (ta the angular 
frequency), A the logarithmic decrement, T the tensile 
load on the specimen and N = (1-  0.63D/C). The decre- 

ment was calculated from the successive excursion ampli- 
tudes A~ as: 

A=~ In A / A  i + 1 (2) 

and is related to the loss modulus G" as: 

A=~G' /G '  (3) 

The specimens were approximately 50 mm long, 3 mm 
wide and 0.2 mm thick. They were prepared in a manner 
similar to the dielectric samples in Part 2. The amorphous 
6B-6 specimen (Tg=-33°C) was pressed between 
aluminum foils at room temperature. The sample strip 
was cut, the pendulum grip loaded and the specimen 
transferred into the pendulum chamber while immersed in 
liquid nitrogen. 

The samples used are described in Part 2. The 
mechanical measurements included one more sample 
than in the dielectric case, a 70-30 specimen; thus 6-6 
homopolymer, 90-10, 80-20, 70-30, and 60-40 
copolymers and 6B-6 homopolymer were studied. 

RESULTS AND DATA FITTING 

Experimental results for the extremes of 6-6 crystalline 
homopolymer and 6B-6 amorphous homopolymer are 
shown as log G' and log G" versus temperature in Figures 
1-4. It is necessary to fit the data to phenomenological 
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Figure 3 Experimental data for storage shear modulus of 
amorphous 6B-6 homopolymer versus temperature (~1 Hz) 
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Figure 4 Experimental data for loss shear modulus of amorphous 
6B-6 homopolymer versus temperature (-~1 Hz) 
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Table 1 Relaxation spectra for the 3" process a 

log G U log G R ~ log r 

Samples log G~I S u x 103 log GI~ I S R x 103 ~o ~' ~ A - B  Too 

6 - 6  0.29 -0 .8  0.02 -0 .8  (0.269) (0.003) (1.0) (2514) (18.87) 0.0 
90-10 0.30 -1 .0  0.05 -1 .0  (0.263) (0.002) (1.0) (2368) (18.30) 0.0 
80-20 0.34 -1.0 0.07 -0.5 (0.261) (0.002) (1.0) (2470) (18.82) 0.0 
70-30 0.35 0.0 0.08 -0.5 0.25 0.002 1.0 2500 18.80 0.0 
60-40 0.40 0.0 0.10 0.0 (0.246) (0.002) (1.0) (2732) (20.20) 0.0 
6B-6  0.48 --0.4 0.18 --1.0 (0.226) (0.001) (1.0) (2444) (17.82) 0.0 

a Parameters for equation 4 of test. GI~ is the unrelaxed modulus at 100 K, S U is the temperature coefficient of log G U. GI~ is the relaxed 7 
process modulus at 200 K, S R is the temperature coefficient of log GR; ~ is the width parameter at 173 K, ~' is its temperature coefficient; 
The skewness parameter ~= 1 for all specimens; the temperature dependence of log r is defined in equation (5). Values in parenthesis were 
taken unadjusted from Table 2 of ref. 1 

Table 2 Relaxation spectra for the/3 process a 

log G U log G R ~ log r 

Sample log GI~ S U x 103 log GI~ S R x 103 ~ 0  ~, ~- A --B T.= 

6--6 0.02 --0.8 --0.50 --1.5 (0.132) (0.002) (1.0) (783.0) (17.76) (180) 
90--10 0.05 --1.0 --0.56 --2.0 (0.176) (0.003) (1.0) (590.3) (15.00) 186 
80--20 0.07 --0.5 --0.60 --3.0 (0.218) (0.003) (1.0) (550.0) (13.81) 186 
70--30 0.08 --0.5 --0.68 --5.0 0.29 0.0025 1.0 756.4 -15.30 176 
60--40 0.10 0.0 --0.72 _b  0.60 0.0 (1.0) (802.2) (15.73) 172 
6B--6 0.18 -1.0 see text 

0 0 a Parameters for equation (4) of text. GI~ is the unrelaxed modulus at 200 K (= G°~),  S U is the temperature coefficient of log GU, G R is 
the unrelaxed 3" +/3 modulus at 260 K, S R is the temperature coefficient of log G~ I~0  is the width parameter at 223 K, ~' is the 
temperature coefficient; the skewness parameter ~= 1.0 for all specimens listed; the temperature dependence of log r is defined in equation (5). 
Values in parenthesis were taken from Table 3 of ref. 1 
b The temperature interval between complete relaxation of the # process and melting is too small to determine a temperature coefficient 

equations to discuss the relaxation broadness and the 
unrelaxed relaxed moduli. There is, however, a dilemma 
as the single frequency torsion pendulum data do not 
provide sufficient information for this purpose. However, 
it does seem reasonable that the temperature behaviour of 
the central relaxation times of the dielectric and mechani- 
cal relaxation should be similar. Further, the phenomeno- 
logical equations used in fitting dielectric data should also 
be fully able to fit mechanical data if properly para- 
meterized. Thus, an attempt was made to fit the mechani- 
cal data using the Havriliak-Negami equations s (HN) 
described in Part 2. As the moduli relax to lower values 
with decreasing frequency a slight modification is nec- 
essary and equation (1) of Part 2 is transcribed for the 
complex shear modulus G* as: 

G* = (Gu- GR)I(1 --(1 +(iogzl )~' )-#~) 
+(t; u -- GR)z(1 -- (1 + (icoz 2 )~')-#~) + GR2 (4) 

where subscripts R, U refer to the relaxed and unrelaxed 
values, z to central relaxation time, ~ to the width 
parameter, ~ to the skewness parameter, co to angular 
frequency, and subscripts 1 and 2 to the two relaxation 
processes (1 =~, 2=fl) present. 

The aim was to use initially the values of z, ~ and/~ 
determined from dielectric measurements, selecting only 
GR, Gu values specifically for the mechanical 
measurements, and then to adjust ~,/~values as necessary 
to preserve the z values as far as possible between the two 
types of measurements. This strategy was successful and 
in the more crystalline samples (6-6 homopolymer and 

90-10, 80-20 and 70-30 copolymers) the only adjustments 
made to the dielectric parameters was to shift the 
temperature dependence of log ~ values for the fl process 
by altering To slightly in: 

log T= A / ( T -  Too) + B (5) 

and preserving A and B. The ~ values were adapted 
directly (and/~ = 1 for these samples). As the 70-30 sample 
was not measured dielectrically the log ~ and ~ values 
were estimated by interpolation from the dielectric values 
for the other specimens. For the 60-40 (20% crystallinity) 
specimen, the fl glass-rubber relaxation was sharper 
mechanically than dielectrically and a higher 
temperature-independent value of ~2 was used. For the 
amorphous 6B-6 homopolymer the torsion pendulum is 
not suitable for studying the glass transition and only the 
beginning of the region can be measured. The dielectric ~, 
fl, log z parameters (Table 3, Part 2) do predict a sharp 
downturn for log G' at the correct temperature. However, 
mechanically the beginning of softening appears even 
sharper than the relaxation of the dielectric constant. The 
mechanical relaxation spectrum fitting results are shown 
in Table 1 for the ), process and in Table 2 for the fl process. 
A typical fit is shown in Figures 5 and 6 where log G' and 
log G" versus temperature calculated from equation (4) 
and the parameters of Tables 1 and 2 are compared with 
the experimental values for the 80-20 copolymer. 

The mechanical spectra derived are not necessarily the 
best possible but it would be difficult to extract more 
information reliably from isochronal single frequency 
torsion pendulum scans. In particular the bulk specimen 
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Figure 5 Phenomenological data-fitting. Storage shear modulus 
of 80-20 copolymer. Points are experimental, curves are 
calculated using equation (4) of text and parameters of Tables 1 
and 2 

relaxed and unrelaxed modulus values for both the y and/Y 
processes should be reliable. Furthermore, it is evident 
that the shape and temperature dependence of the 
dielectric and mechanical processes are remarkably 
similar. The principal inadequacy of the mechanical fits is 
the detailed shape of the 7 process G" versus T. This is 
actually an inadequacy of the original dielectric fitting. As 
discussed in Part 2, dielectrically at the lowest frequency, 
10 Hz, the 7 process was becoming partially resolved into 
two processes. However, no attempt was made to 
accommodate this in the fitting. Mechanically the same 
thing is apparent but accentuated by even lower frequency 
(1 Hz). Thus, these fits of the ? log G" are smoothings of 
partially-resolved dual processes. 

and lower bounds, respectively, on G. However, these 
bounds are very poor if G1 and G2 differ greatly. Other 
approaches for composite mixtures have been discussed 
previously 6'7 and the reader is referred to these 
discussions for a fuller account of the literature. Here, an 
improved approach is used which has been developed 
recently 7 . It is the mechanical counterpart of the 
bounding method for the dielectric constant of lamellar 
structures used in Part 2. The details are more 
complicated mechanically than dielectrically. The 
resulting equations used here for the upper and lower 
bounds to the shear modulus, G(upper) and G(lower), of a 
macroscopically isotropic crystalline composite with 
locally lamellar structure are enumerated in the 
Appendix. 

The inputs for the calculation of G(upper) and G(lower) 
are the elastic constant array for the amorphous fraction 
(which when assumed to be isotropic requires two 
independent constants; a shear modulus G 1 and a 
Poissons ratio v, for example) and the elastic constant 
array for the crystal fraction, C2. For the orthotropic 
symmetry that seems appropriate for lamellar structures 
and for many polymer crystals also, nine elastic constants 
are required. The Poissons ratio for the amorphous 
fraction is regarded as a fixed parameter with a value of 
0.33. The shear modulus G1 of the amorphous fraction is 
the quantity the value for which needs to be inferred 
from the experimental data. The elastic constants of the 
polyester crystal are not known but they should be similar 
to those for the structurally similar polyethylene. As an 
expedient the C2 array used for polyethylene 7 was 
adapted by multiplying the elastic constants by a single 
multiplier to be regarded as an adjustable parameter (Fc). 

In Figure 7 the experimental values of the unrelaxed 
modulus (at 100 K), the relaxed ~ process modulus= 
unrelaxed fl process modulus (at 200 K), and the relaxed 
y + fl modulus (at 250 and 300 K) are plotted versus the 
degree of crystallinity for each of the six specimens, the 
values being taken from Tables I and 2. First an attempt to 

DISCUSSION 

As the shape and temperature dependence of both the ~, 
and fl mechanical processes are very similar to their 
dielectric counterparts the discussion of the relaxation 
dynamics in Part 2 are not repeated. It suffices to reiterate 
that for the/Y glass-rubber relaxation in the amorphous 
fraction the broadness is extremely sensitive to the 
presence of the crystal fraction and becomes increasingly 
broad as the degree of crystallinity increases. In contrast, 
the 7 process dynamic behavious process is insensitive to 
the presence of and degree of crystallinity. 

The aim here is to interpret the relaxed specimen 
moduli in terms of values appropriate to the individual 
amorphous and crystalline phases. The Voigt uniform 
strain equation: 

G = ( 1 - X ) G  1 + X G  2 (6a) 

and the Ruess uniform stress equation: 

1/G = (1 - X)/G 1 + X/G2 (6b) 

where 1, 2 refer to the amorphous and crystal phases, 
respectively, and X is the degree of crystallinity, are upper 
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Figure  6 Phenomenological data-fitting. Loss shear modulus of 
80-20 copolymer. Points are experimental, curves are calculated 
using equation (4) of text and parameters of Tables 1 and 2 
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Figure 7 Relaxation strength versus crystallinity. Lower bound 
composite fits. Unrelaxed and relaxed shear moduli for T and/3 
processes versus crystallinity. Points are derived experimental 
ones (from Tables I and 2). (O, unrelaxed 7 process modulus, 
100K; O, relaxed 7, unrelaxed/~ modulus, 200K; El, A, relaxed 
7+/~ process modulus at 250, 300K, respectively). Curves are 
calculated fits using lower bound lamellar composite equations. 
Relaxed 7 process G~ curve (200K) uses equation (8) of the text 
for G 1 and assumed the ? process occurs only in amorphous 
fraction and that 6-6 units contribute 2.1 times the strength of 
the 6B-6 units. See text for amorphous-phase shear modulus 
values G 1 used at each temperature in composite equation to 
calculate curves 

and X is the degree of crystallinity. Both Glu and Fcat 
200 K were taken as the values determined at 
100 K but corrected for the effects of thermal 
expansion as Glu=2.9x 106 and Fc=0.40x 106 where 
5 = - 1.0 x 10-3(T - 100 K). The temperature coefficient 
is consistent with results for polyethy_le_ne 6'7. Thus, 
G~u=2.4 GPa along with NSA=0.53, NSa=0.25 give 
values of G1 from equation (8) that inserted in the lower 
bound composite equation in turn give the calculated 
curve (at 200 K) in Figure 7. 

For the next two curves, the relaxed 7+fl moduli (at 
250 K and 300 K), an attempt is made to establish 
whether the same degree of crystallinity independent 
value of Gz can be used to fit all of the specimens at each 
temperature. This may well be reasonable as in the 
dielectric case although the presence of the crystal phase 
reduces the dielectric relaxation strength (and the 
correlation factor g) of the amorphous 7 + fl process the 
variation of 7 +/3 correlation factor among the various 
crystalline specimens is minor (Figure 14 in Part 2). 
Curves calculated using G~ = 0.13 GPa at 250 K and 0.090 
GPa at 300 K are shown in Figure 7. 

Figure 7 shows that the lower bound lamellar 
composite equation represents reasonably accurately the 
shear modulus behaviour. To fit the upper bound 
relations (G(upper), Appendix) to the data the crystal 
phase properties are assumed to be f'Lxed and the same 
values of Fc as in the lower bound fittings are used. Figure 
8 shows the fits achieved using the same parameters at 
100 K for the unrelaxed shear modulus and at 200 K for 
the relaxed ~ process modulus as used in the lower bound 
fit (Figure 7) but using Gz =0.08 GPa at 250 K and 
G1 = 0.035 GPa at 300 K for the relaxed amorphous phase 
7 +fl modulus. It is evident that the fits are not as good as 

lower bound equations (G)lower), Appendix) was made as 
follows. At the lowest temperature (glassy amorphous 
phase plus crystals, 100 K) a single crystallinity inde- 
pendent value of G1 and the crystal-phase elastic constant 
multiplier, Fo were adjusted to attempt to fit the experim- 
ental points. The result for G1 = 2.9 GPa, Fc = 0.40 in the 
lower bound equation is shown as the curve at 100 K in 
Figure 7. 

For the next curve, the relaxed 7 process values (200 K), 
the procedure used for the dielectric strength is followed; 
i.e. it is assumed that the process occurs only in the 
amorphous fraction but that the 6-6 and 6B-6 units 
contribute differently to the relaxed modulus. The site 
theory a'9 of mechanical relaxation invokes additivity of 
compliance contributions so that for the relaxed 7 process 
amorphous phase shear modulus GI: 

l i e ,  = ,/~flB + ,i~s,, + l /G,u (7) 

where ~ ,  ti~ are the concentrations of A (= 66-6) and B 
(_= 6B-6) units, respectively, in the amorphous phase, Sa, 
Ss are the compliance strengths contributed by these units 
and Gmu is the unrelaxed amorphous phase modulus. By 
analogy with equation (3) of Part 2, this is rewritten as: 

1/G~ = 1/G~u + NSA(1 -- X - -  PB)/(1 -- X )  + NSsPs/(1 - X)  
(8) 

where N is the total sample concentration of A and B 
units, Ps is the mol fraction of B units in the specimen, 
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Figure 8 Upper bound composite fits. Same details as Figure 7 
except upper bound lamellar composite equations were used and 
different values of amorphous-phase shear modulus, G 1, at 250K, 
300K were selected (see text for values) 
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Figure 9 The modulus of the amorphous phase. Unrelaxed and 
relaxed amorphous fraction shear modulus, G I, for 7 and fl 
processes. For the 7 process the same values are inferred from 
lower and upper bound fits for G1 (unrelaxed) ( . . . . .  ) and G o 
(relaxed) (I, see text for explanation of vertical bar) (but lower 
bound fit is better). For the relaxed 7+ fl processes (250~300K)  
bounds on G 1 from both lower (L) and upper bound (U) 
equations are shown and intermediate values are in shaded area. 
Dashed lines ( - - - )  are schematic of relaxation between 
unrelaxed, relaxed values for 7 and fl processes (at -~1 Hz). Open 
circle curve ((3) represents actual behaviour of 6B-6  amorphous 
homopolymer and the chain segments of which are 
unconstrained by a crystal phase 

Most interestingly, it is evident that the relaxed 
amorphous y + p  modulus in Figure 9 is reasonably well 
specified by the bounds, d~= 100+20 MPa at 250 K and 
decrease relatively rapidly with increasing temperature. 
This value is believed to be the most reliable estimate of 
the amorphous fraction relaxed rubbery modulus in a 
semi-crystalline polymer yet available. Clearly, 100 MPa 
is an extremely high shear modulus for a material to be 
regarded as rubbery. To contrast this very high relaxed 
amorphous-phase modulus in the crystalline samples 
Figure 9 also shows the actual behaviour of G' of the 6B-6 
amorphous homopolymer the chain segments of which 
are not confined by the crystal phase. 

Finally, returning briefly to the fitting of the composite 
equations to the moduli it is apparent that at low 
temperature (100K) unrelaxed experimental moduli 
plotted against crystallinity show the specimen G to 
decrease with increasing crystallinity. This is surprising 
and could be the result of several factors. In the lower 
bound fit of Figure 7 the effect is accomodated simply by 
invoking a crystal elastic constant matrix that leads to an 
isotropic aggregage average for the 100~o crystalline 
phase (right-hand extreme) that is lower than the 
amorphous modulus G~ (left-hand, zero crystallinity 
extreme in the plot). However, the same crystal elastic 
constant matrix used in the upper bound composite 
equations leads to an aggregate average 100~o crystalline 
phase value that is many times higher than G. So the real 
situation may perhaps be intermediate, the 100~/o 
crystalline aggregate having a shear modulus higher than 
the amorphous phase but with a minimum in the plots at 
intermediate crystallinity as a composite effect in mixing 
highly anisotropic crystals with the isotropic amorphous 
phase. As an illustration a Halpin-Tsai I °-form equation 

for the lower bound lamellar composite equations. 
Slightly better fits at 100 K for the unrelaxed modulus and 
200 K for the relaxed ? process modulus (but not as good 
as the fit in Figure 7) could be obtained by lowering F c (to 
~0.2) but this does not allow the crystal properties to be 
known and fixed in both lower and upper bound fitting. 
Conversely, lowering the Fc value used in the lower 
bound fitting (Figure 7) would give poorer fits; thus, the 
higher value of Fc=0.4 as likely to be more realistic. 

Considering this approach of lower and upper bound 
lamellar composite fitting, it is concluded that of the two 
extremes, the lower bound behaviour gives a better 
overall representation, espectially for the low- 
temperature behaviour in the unrelaxed (100 K) moduli 
and relaxed T process (200 K) moduli. More importantly, 
both extremes give a reasonable representation of the 
relaxed ? + fl modulus; especially at 250 K. At 300 K the 
experimental moduli turn down faster at low crystallinity 
than the composite equations predict for the degree of 
crystallinity independent GI. For the higher crystallinity 
specimens particularly, it is reasonable to regard the lower 
bound fitting in Figure 7 and the upper bound fitting in 
Figure 8 as providing upper and lower bounds, 
respectively, on the amorphous-phase shear modulus GI. 
These resulting bounds on GI are plotted in Figure 9. The 
vertical bar for the relaxed ~, process amorphous shear 
modulus at 200 K shows the range of G1 indicated by 
equation (8) for the 6-6 homopolymer (Pa = 0) to the 6B-6 
homopolymer (PB = 1). 
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Figure I0 Intermediate fit (between lower and upper bound 
equations) to unrelaxed and relaxed 7 and fl process modul i  (~ in 
equation (9) =0.1 ). The fit is similar to that in Figure 7 but upturn 
to higher values of shear modulus at 100% crystallinity is evident 
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is used as an interpolating function between lower and 
upper bound behaviour; thus: 

G= (1 + ~G(upper))/(~ + 1/G(lower)) (9) 

For ~--,0 this reduces to G(lower) and for ~---,~ to 
G(upper). In Figure 10 calculated curves are shown of G 
versus crystallinity with the same input parameters as 
used in the Figure 7 lower bound fits inserted into both 
G(lower) and G(upper) and for a value of ~=0.1. It is 
evident that the fit of Figure 7 is essentially undisturbed. 
Only an upturn of G at very high crystallinity is 
introduced, one sufficient to accomodate the 100% 
crystalline aggregate having a higher shear modulus than 
the completely amorphous opposite extreme. This feature 
of ~ = 0.1 would then of course be entirely consistent with 
any conclusion represented by Figure 9. Another 
possibility which sould be mentioned is that the 
amorphous-phase modulus could be dependent on 
chemical composition in the glassy unrelaxed state 
(100 K) as well as in the relaxed state above the y process 
~00 K). Therefore, equation (8) (with different values of 
SA, Se) should perhaps be used at 100 K for the unrelaxed 
amorphous modulus also. In trials good fits but not as 
good as those in Figure 7 were obtained at 100 and 200 K 
using this approach. Higher values of the crystal elastic 
constant multiplier (Fc=0.66) also resulted. More 
importantly, the values of Gt for the relaxed ? + fl process 
(250, 300 K) from the lower and upper bound fits are 
essentially unchanged by this refinement. 
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APPENDIX 

The elastic constant matrix of the crystal phase, 2, 
assumed to have orthorhombic or higher symmetry is: 

-C11(2 ) Ct2(2 ) C13(2 ) 0 0 0 - 

C12(2) C22(2 ) C23(2) 0 0 0 

Ct3(2 ) C23(2 ) Ca3(2) 0 0 0 
C2 = 

0 0 0 C,4(2) 0 0 

0 0 0 0 Cs 5(2) 0 

0 0 0 0 0 C66(2) 

its inverse $2 =C21 has the same structure but with 
elements St 1(2), $12(2), etc. If the amorphous phase, 1, is 

assumed to be isotropic its elastic constant matrix Ca 
simplifies to Ctt(1)=C22(1)=C33(1)=,~.+2Gt where 
2=2vlGt/(1-2vt) ,  Ct2(1)=Ct3(1)=C2s(1)=2, and 
C44(1)=Css(1)=C66(1)=GI. The inverse St=C~ 1 has 
elements Sit(l), $12(1), etc. The elastic constant array 
C of the lamellar composite consisting of extended 
alternating thin layers of amorphous and crystalline 
phases and its inverse S = C-  t are written in terms of the 
elements of C1, St, C2 and $2 and the volume fractions of 
the amorphous and crystalline phases Xt and X 2 asT: 

C11 ~- X1 C11(1) "1- X2C11(2) 

C12 = XI  C12( 1 ) + X2C12(2) 

C22 ~-- X1C22(1 ) + XIC22(2) 

C33 = (S 1 IS22 - 822)/DS 

C13 = (S12S23 -- $22S13)/DS 

C23 = (S13512 - S11S23 )/DS 

C44 = 1/$44, C55 = 1/$55 

C66 = 1/S66 --- XI  C66(1 ) + X2C66(2) 

and where: 
St 3 = XI $13(1) + X2Sl 3(2) 

$23 = XIS23(1) -I- X2S23(2) 

$33 = X1833(1 ) --1- X2S33(2 ) 

D = C l l C 2 2 - C 2 2  

S l  I = C11/D + 8~3/S33 

SI 2 = - C12/D + Sl 3S23/$33 

$22 = C 1 I /D + $23/$33 

S44 = X t S44(1 ) + X2 S44(2) 

$55 = XIS55(1 ) + X2S55(2) 

DS • S 33/(Ct 1 C 2 2 -  C22) 

The matrix C with elements Clt, Ct2, etc. above when 
spatially averaged to (C )  for a randomly oriented 
material has elements: 

Art  =A22 =A33 = (3A +2B + 4C)/5 

At2 =Ala =A23 = (,4 +4B-2C)/5 

A44=As5 =A66 = (.4 - B  + 3C)/5 

where A=(Cat +C22+C33)/3, B=(C12 +Ct3 +C23)/3, 
and C=(C44+Cs5+C66)/3. The upper bound to the 
shear modulus of this isotropic material is: 

G(upper) = A,,4 

When the matrix S (with elements $11, St 2, etc.) is spatially 
averaged to (S> for a randomly-oriented material, the 
elements are: 

A'tt =A'22 =A;z = (3A' +2B' + 4C')/5 

A't 2 =A't 3 =A2a= (A'+4B'-2C')/5 

A4,t=A'55 =A66 = (A'-B' + 3C')/5 

where A'= (Sat +$22 +$33)/3, B'= ($12 +St3 +$23)/3 
and C'= ($4,+$55+$6~)/12. The lower bound to the 
shear modulus is: 

G(lower) = 1/(4A44) 
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